​​​​​Orogenic Architecture and Crustal Growth 

from Accretion to Collision

IGCP 662

36th IGC rescheduled to 9-14 Novermeber 2020

45.7.8 Orogenic architecture and crustal growth from accretion to collision (IGCP-662)

Events
  • The Second Workshop and Field Excursion of IGCP662
  • Third circular of IGCP662 workshop
  • Second circular of IGCP662 workshop
  • First Workshop of IGCP-Project 662
Related Websites
UNESCO
IUGS
IGCP 662

Related IGCP Projects

IGCP 668
Map and Database
News & reports
Meetings

Maps  Website

Recently Publications
ARCHIVES                          
  • [2019蒙古会议和野外考察]

    3. Photos of the Second Workshop and Field Excursion of IGCP662, 04-10 July, 2019,Mongolia

    0.000.00

  • [201809第一次会议野外考察]

    2. First Workshop and traning Course of Project IGCP662,2018

    0.000.00

  • [201809第一次会议野外考察]

    1. Field Excursion of First Workshop of Project IGCP-662,15-20 September, 2018

    0.000.00

  • [老照片与igcp662相关]

    0. Conference with IGCP662

    0.000.00

Tao Wang,Reimar Seltmann, He Huang,Ying Tong,etc. Orogen architecture and crustal growth from accretion to collision (IGCP#662): Scientific Activities 2018-2019. June 2020,Episodes. 

DOI:https://doi.org/10.18814/epiiugs/2020/020061. 

1. Ding-Jun Wen,Zhen-Yu He.Late Carboniferous crustal evolution of the Chinese Central Tianshan microcontinent: Insights from zircon U–Pb and Hf isotopes of granites.Geological Journal. 2020;55:1947–1963.

DOI: https://doi.org/10.1002/gj.3794

2. Tian-Yu Lu,Zhen-Yu He,Reiner Klemd.Two phases of post-onset collision adakitic magmatism in the southern Lhasa subterrane, Tibet, and their tectonic implications.The Geological Society of America.

DOI:https://doi.org/10.1130/B35326.1

3. Li-Li Yan, Zhen-Yu He,, Reiner Klemd, Christoph Beier, Xi-Sheng Xu. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology 542(2020) 119596.

DOI:https://doi.org/10.1016/j.chemgeo.2020.119596

4.Bolat P. Khassen, Inna Yu Safonova,Pyotr V. Yermolov,Rostislav M Antonyuk,etc. The Tekturmas ophiolite belt of central Kazakhstan:Geology, magmatism, and tectonics.Geological Journal. 2020;55:2363–2382.

DOI:https://doi.org/10.1002/gj.3782.


5.Late Paleozoic Chingiz and Saur arc amalgamation in West Junggar (NW China): implications for accretionary tectonics in the southern Altaids.Song Shuaihua,Xiao  Wenjiao,Windley  Brian F,etc.

DOI: https://doi.org/10.1029/2019TC005781


6.Mesozoic juvenile crustal formation in the easternmost Tethys: Zircon Hf isotopic evidence from Sumatran granitoids, Indonesia.  Shan Li;   Sun-Lin Chung;   Yu-Ming Lai;   Azman A. Ghani;   Hao-Yang Lee;   Sayed Murtadha . Geology (2020).

DOI: https://doi.org/10.1130/G47304.1 


7. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt.  He Huang,Tao Wang, Ying Tong,Qie Qin,Xuxuan Ma,Jiyuan Yin.

DOI:https://doi.org/10.1016/j.earscirev.2020.103255


8.Magma recharge processes of the Yandangshan volcanic-plutonic caldera complex in the coastal SE China: Constraint from inter-grain variation of Sr isotope of plagioclase. Li-li  Yan,Zhen-yu He,Xi-Sheng Xu.Journal of Asian Earth Sciences, Volume 201, 1 October 2020, 104511.

DOI:https://doi.org/10.1016/j.jseaes.2020.104511


9.Xiao, W.*, Liu, Y., Somerville, I., Schulmann, K., Kusky, T, Seltmann, R., 2020. Accretionary tectonics, deep structures and metallogeny of southern Altaids. Geological Journal, 55, 1613-1619.

DOI: https://doi.org/10.1002/gj.3797


10.Xiao, W.*, Song, D., Windley, B.F., Li, J., Han, C., Wan, B., Zhang, J., Ao, S., Zhang, Z., 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives. Science China Earth Sciences, 63, 329–361.

DOI:https://doi.org/10.1007/s11430-019-9524-6


11.Ao, S., Xiao, W., Windley, B., Mao, Q., Zhang, J., Zhang, Z., 2020. Ordovician to Early Permian accretionary tectonics of Eastern Tianshan: Insights from Kawabulak ophiolitic mélange, granitoid and granitic gneiss. Geological Journal, 55, 280-298.

DOI: https://doi.org/10.1002/gj.3103.


12.Aouizerat, A., Xiao, W.*, Schulmann, K., Windley, B., Zhou, J., Zhang, J., Ao, S., Song, D., Monié, P. and Liu, K., 2020. Accretion, subduction erosion, and tectonic extrusion during Late Paleozoic to Mesozoic orogenesis in NE China. Journal of Asian Earth Sciences, 194, 104258.

DOI:https://doi.org/10.1016/j.jseaes.2020.104258


13.Bai, X., Chen, Y., Song, D., Xiao, W.*, Windley, B., Ao, S., Li, L. and Xiang, D., 2020. A new Carboniferous–Permian intra‐oceanic subduction system in the North Tianshan (NW China): Implications for multiple accretionary tectonics of the southern Altaids. Geological Journal, 55, 2232-2253.

DOI:https://doi.org/10.1002/gj.3787


14.Borbugulov, E., Chen, Y., Xiao, W.*, Windley, B.F., Schulmann, K., Zhang, J., Zhang, Z., Song, S., Li, R., Sang, M., 2020. Late Carboniferous southward migration of Tarbagatay subduction–accretion complex by slab retreat and break-off in West Junggar (NW China). Geological Journal, 55, 11-30.

DOI:https://doi.org/10.1002/gj.3408.


15.Chen, Z.Y., Xiao, W.J.*, Windley, B.F., Schulmann, K., Mao, Q.G., Zhang, Z.Y., Zhang, J.E., Li, Y.C., Song, S.H., 2020. Latest Permian–early Triassic arc amalgamation of the Eastern Tianshan (NW China): Constraints from detrital zircons and Hf isotopes of Devonian–Triassic sediments. Geological Journal, 55, 1708-1721, DOI:https://doi.org/10.1002/gj.3540.


16.Esmaeili, R., Xiao, W.*, Ebrahimi, M., Zhang, J., Zhang, Z., Abd El-Rahman, Y., Han, C., Wan, B., Ao, S., Song, D., Shahabi, S, Aouizerat, A., 2020. Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction. International Geology Review, 62(13-14), 1677-1697.

DOI:https://doi.org/10.1080/00206814.2019.1658232


17.Esmaeili, R., Xiao, W.*, Griffin, W., Shafaii Moghadam, H., Zhang, Z., Ebrahimi, M., Zhang, J., Wan, B., Ao, S, Bhandari, S., 2020. Reconstructing the source and growth of the Makran Accretionary Complex: Constraints from detrital zircon U‐Pb Geochronology. Tectonics, 39.

DOI:https://doi.org/10.1029/2019TC005963.


18.Guy, A., Schulmann, K., Soejono, I, Xiao, W., 2020. Revision of the Chinese Altai‐East Junggar terrane accretion model based on geophysical and geological constraints. Tectonics, 39, e2019TC006026.

DOI:https://doi.org/10.1029/2019TC006026


19.Jia, X., Zhai, M., Xiao, W., Li, L., Ratheesh-Kumar, R. T., Wu, J., Liu, Y. Mesoarchean to Paleoproterozoic crustal evolution of the Taihua Complex in the southern North China Craton. Precambrian Research, 2020, 337: 105451.

DOI:https://doi.org/10.1016/j.precamres.2019.105451


20.Li, Y., Xiao, W., Li, Z., Wang, K., Zheng, J.P, Brouwer, F., 2020. Early Neoproterozoic magmatism in the Central Qilian block, NW China: Geochronological and petrogenetic constraints for Rodinia assembly. Geological Society of America Bulletin, 132, 2415–2431.

DOI:https://doi.org/10.1130/B35637.1


21.Li, Y., Zheng, J.P., Xiao, W., Wang, G, Brouwer, F., 2020. Circa 2.5 Ga granitoids in the eastern North China craton: Melting from ca. 2.7 Ga accretionary crust. Geological Society of America Bulletin, 132, 817–834.

DOI:https://10.1130/B35091.1


22.Li, Z., Li, Y., Xiao, W., Zheng, J.P., Brouwer, F., 2020. Geochemical and zircon U-Pb-Hf isotopic study of metasedimentary rocks from the Huangyuan Group of the Central Qilian block (NW China): Implications for paleogeographic reconstruction of Rodinia. Precambrian Research, 351, 105947.

DOI:https://doi.org/10.1016/j.precamres.2020.105947


23.Ratheesh-Kumar, R.T., Windley, B.F., Xiao, W.J., Jia, X-L., Mohanty, D.P., Zeba- Nezrin, F.K., 2020. Early growth of the Indian lithosphere: implications from the assembly of the Dharwar Craton and adjacent granulite blocks, southern India. Precambrian Research, 336, 105491, 

DOI: https://doi.org/10.1016/j.precamres. 2019.105491.


24.Rahman, M.J.J.*, Xiao, W.*, Sakawat, H.M., Rumana, Y., Sayem, A.S.M., Ao, S., Yang, L., Rashed, A., Tamanaya, DN., 2020. Geochemistry and detrital zircon U-Pb dating of Pliocene-Pleistocene sandstones of the Chittagong Tripura Fold Belt (Bangladesh): Implications for provenance. Gondwana Research, 2020, 78, 278-290.

DOI:https://doi.org/10.1016/j.gr.2019.07.018


25.Sang, M., Xiao, W.*, Feng, Q, Windley, B., 2020. Radiolarian age and geochemistry of cherts from the Atbashi accretionary complex, Kyrgyz South Tianshan. Geological Journal, 55 (12), 8329-8338.

DOI:https://doi.org/10.1002/gj.3952


26.Sang, M., Xiao, W*, Windley, B., 2020. Unravelling a Devonian–Triassic seamount chain in the South Tianshan high‐pressure/ultrahigh‐pressure accretionary complex in the Atbashi area (Kyrgyzstan). Geological Journal, 55, 2300-2317.

DOI:https://doi.org/10.1002/gj.3776


27.Song, S., Xiao, W.*, Windley, B., Collins, A., Chen, Y., Zhang, J., Schulmann, K., Han, C., Wan, B., Ao, S., Zhang, Z., Song, D, Li, R., 2020. Late Paleozoic Chingiz and Saur Arc Amalgamation in West Junggar (NW China): Implications for Accretionary Tectonics in the Southern Altaids. Tectonics, 39, e2019TC005781. DOI:https://doi.org/10.1029/2019TC005781.


28.Tian, Z., Liu, F., Liu, P., Wen, F, Xiao, W., 2020. A Paleoproterozoic nappe on Meso-Archean gneisses exhumed by a Cretaceous metamorphic core complex in northeastern North China Craton. International Journal of Earth Sciences, 109, 1403-1420.

DOI:https://doi.org/10.1007/s00531-020-01870-4


29.Wang, T., Seltmann, R., Huang, H., Tong, Y., Gladkochub, D., O'Reilly, S., Staal, C., Hou, Z., Safonova, I, Xiao, W., 2020. Orogen architecture and crustal growth from accretion to collision (IGCP#662): Scientific activities 2018-2019. Episodes.

DOI:https://doi.org/10.18814/epiiugs/2020/020061


30.Yang, H., Zhang, H., Xiao, W., Tao, L., Gao, Z., Luo, B., Zhang, L., 2020. Multiple Early Paleozoic granitoids from the southeastern Qilian orogen, NW China: Magma responses to slab roll-back and break-off. Lithos, 2020, 105910.

DOI:https://doi.org/10.1016/j.lithos.2020.105910


31.Yang, L., Xiao, W.*, Rahman, M., Windley, B., Schulmann, K., Ao, S., Zhang, J., Chen, Z., Hossain, M, Dong, Y., 2020. Indo-Burma passive amalgamation along the Kaladan Fault: Insights from zircon provenance in the Chittagong-Tripura Fold Belt (Bangladesh). Geological Society of America Bulletin, 132, 1953-1968.

DOI:https://doi.org/10.1130/B35429.1


32.Yin, J., Xiao, W., Sun, M., Chen, W., Yuan, C., Zhang, Y., Wang, T., Du, Q., Wang, X, Xia, X., 2020. Petrogenesis of Early Cambrian granitoids in the western Kunlun orogenic belt, Northwest Tibet: Insight into early stage subduction of the Proto-Tethys Ocean. Geological Society of America Bulletin, 132, 2221-2240.

DOI:https://doi.org/10.1130/B35408.1


33.Yogibekov, D., Sang, M., Xiao, W.*, Windley, B., Mamadjanov, Y., Yang, H., Huang, P., Aminov, J., Vatanbekov, F., 2020. Late Palaeozoic to Late Triassic northward accretion and incorporation of seamounts along the northern South Pamir: Insights from the anatomy of the Pshart accretionary complex. Geological Journal, 55 (12), 7837-7857.

DOI:https://doi.org/10.1002/gj.3906


34.Zhai, M.*, Wang, C., Xiao, W.*, Zhou, M.-F., 2020. Sedimentology, Geodynamics, resources and environments of China and adjacent areas: A special issue in memory of Professor Shu Sun for his scientific contributions and academic services. Journal of Asian Earth Sciences, 194, 104391.

DOI:https://doi.org/10.1016/j.jseaes.2020.104391


35.Zheng, R., Li, J., Zhang, J., Xiao, W., Wang, Q., 2020. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high-Mg diorite in the southern Beishan. Lithos, 358-359, 105406.

DOI:https://doi.org/10.1016/j.lithos.2020.105406



​Leave a Message if you want
  • Message*
Submit
Related Conference