​​​​​Orogenic Architecture and Crustal Growth 

from Accretion to Collision

IGCP 662
Publications(2022)

[1]Choulet, F., Seltmann, R., Divaev, F., Shatov, V., Konopelko, D., 2022. Mantle-triggered intrusions in the western Central Asian Orogenic Belt: implications for the fertilisation of the crust in Tian Shan, Uzbekistan. International Journal of Earth Sciences, 1-24.


[2]Gao, Y., Chen, L., Talebian, M., Wu, Z., Wang, X., Lan, H., Ai, Y., Jiang, M., Hou, G., Khatib, M.M., Zhu, R., 2022. Nature and structural heterogeneities of the lithosphere control the continental deformation in the northeastern and eastern Iranian plateau as revealed by shear-wave splitting observations. Earth and Planetary Science Letters, 578, 117284.


[3]Konopelko, D.L., Cherny, R.I., Petrov, S.V., Strekopytov, S., Seltmann, R., Vlasenko, N.S., Streopytov, V.V., Mamadjanov, Y.M., Wang, X.S., Plotinskaya, O.Y., Andreeva, E.M., 2022. The Mushiston Sn deposit in Tajik Tien Shan as the type locality for stannite-cassiterite-hydrostannate mineralization: New mineral chemistry data and genetic constraints. Journal of Geochemical Exploration, 107017.


[4]Lan, H., Chen, L., Chevrot, S., Talebian, M., Wang, X., Gao, Y., Zhang, J., Wu, Z., Shokati, M., Jiang, M., Ai, Y., Hou, G., Mao, M., Pham, T., Xiao, W., Zhu, R., 2022. Structure of the western Jaz Murian forearc basin, southeast Iran, revealed by autocorrelation and polarization analysis of teleseismic P and S waves. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023456.


[5]Li, L., Xiao, W., Windley, B.F., Mao, Q., Gan, J., Jia, X., Yang, H., Sang, M., 2022. Defining the Huangcaopo complex and gabbroic magmatism in the northern Harlik Mountains (NW China): Late Cambrian to latest Permian accretionary growth of the East Junggar Arc? Geological Journal, 57(3), 1022-1045.


[6]Li, L., Xiao, W., Windley, B.F., Yang, H., Jia, X., Sang, M., Abuduxun, N., Liu, Y., 2022. Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids? American Journal of Science, 322(2), 313-350.


[7]Li, P., Sun, M., Narantsetseg, T., Jourdan, F., Hu, W., Yuan, C., 2022. First structural observation around the hinge of the Mongolian Orocline (Central Asia): Implications for the geodynamics of oroclinal bending and the evolution of the Mongol-Okhotsk Ocean. GSA Bulletin.


[8]Li, S., Miller, C.F., Wang, T., Xiao, W., Chew, D., 2022. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas. Geology, 50(4), 427-431.


[9]Li, Y., Xiao, W., Zheng, J., Brouwer, F.M. 2022. Northward subduction of the South Qilian ocean: Insights from early Paleozoic magmatism in the South-Central Qilian belts. Geosystems and Geoenvironment, 1(1), 100013.


[10]Liu, Y., Song, Y., Hou, Z., Xi, D., Li, S., Yue, L., Ma, W., Tang, B., 2022. Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China. Science China Earth Sciences, 65(1), 167-181.


[11]Lu, J.G., Griffin, W.L., Huang, J.X., Dai, H.K., Castillo-Oliver, M., O’Reilly, S.Y., 2022. Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions to Mineralogy and Petrology, 177(2), 1-16.


[12]Lu, T.Y., He, Z.Y., Klemd, R., 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2), 216-221.


[13]Ma, W., Liu, Y., Yang, Z., Huizenga, J. M., Li, Z., Zhao, M., Yue, L., Zhao, S., 2022. Petrogenesis of the quartz diorite from the Lietinggang-Leqingla Pb-Zn-Fe-Cu-(Mo) deposit in southern Tibet: Implications for the genesis of a skarn-type polymetallic deposit in the Tibetan-Himalayan collisional orogen. Ore Geology Reviews, 145, 104920.


[14]Moghadam, H.S., Li, Q.L., Griffin, W.L., Chiaradia, M., Hoernle, K., O’Reilly, S.Y., Esmaeili, R. 2022. The Middle-Late Cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman. Bulletin, 134(5-6), 1414-1442.


[15]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Zhang, W.F., Chen, B.Y., Lei, R.X., Xiao, W.J., 2022. Age and genesis of the Jinshan gold deposit in the Chinese North Tianshan: A link to large-scale strike–slip shearing events. Ore Geology Reviews, 142, 104734.


[16]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Lei, R., Wang, M., Xiao, W., 2022. Permian arc magmatism in the eastern Tianshan: implications for the evolution of the southern Altaids. Social Science Electronic Publishing.


[17]Sang, M., Xiao, W., Windley, B.F., Mao, Q., Zhang, Z., Wang, H., Yang, H., Ao, S., Song, D., Gan, J., Zhang, Z., Li, L., 2022. From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals, 12(2), 166.


[18]Savinskiy, I., Safonova, I., Perfilova, A., Kotler, P., Sato, T., Maruyama, S., 2022. A story of Devonian ocean plate stratigraphy hosted by the Ulaanbaatar accretionary complex, northern Mongolia: implications from geological, structural and U–Pb detrital zircon data. International Journal of Earth Sciences, 1-24.


[19]Sun, Q., Zhao, X., Xue, C., Seltmann, R., McClenaghan, S.H., Li, Y., Symons, D.T., 2022. Neoproterozoic tectonic shift from collisional orogenesis to intraplate extension in the Yili Block, southern Central Asian Orogenic Belt. Precambrian Research, 374, 106626.


[20]Tang, Q., Sun, W., Ao, S., Fu, L.Y., Xiao, W., 2022. Strong lateral heterogeneities of upper mantle shear-wave structures beneath the central and eastern Tien Shan. International Journal of Earth Sciences, 1-15.


[21]Tao, Z., Yin, J., Chen, W., Chen, Y., Sun, J., Xu, Z., 2022. Zircon U-Pb Ages and Tectonic Implications of Late Paleozoic Volcanic Rocks in the Western Tianshan, North Xinjiang, China. Journal of Earth Science, 1-17.


[22]Tao, Z., Yin, J., Sun, M., Wang, T., Yuan, C., Chen, W., Huang, H., Seltmann, R., Thomson, S.N., Chen, Y., 2022. Spatial and temporal variations of geochemical and isotopic compositions of Paleozoic magmatic rocks in the Western Tianshan, NW China: a magmatic response of the Advancing and Retreating Subduction. Journal of Asian Earth Sciences, 105112.


[23]Tao, Z., Yin, J., Xiao, W., Seltmann, R., Chen, W., Sun, M., Wang, T., Yuan, C., Thomson, S.N., Chen, Y., Xia, X., 2022. Contrasting styles of peraluminous S-type and I-type granitic magmatism: Identification and implications for the accretionary history of the Chinese South Tianshan. American Journal of Science, 322(2), 280-312.


[24]Tian, Z., Liu, P., Wen, F., Zhu, H., Wang, W., Liu, F., 2022. Mesoproterozoic accretionary orogenesis: Evidence from∼ 1.4 Ga metamorphism on the southeastern margin of the North China Craton. Journal of Asian Earth Sciences, 105247.


[25]Volante, S., Collins, W.J., Barrote, V., Nordsvan, A.R., Pourteau, A., Li, Z.X., Li, J., Beams, S., 2022. Spatio–temporal evolution of Mesoproterozoic magmatism in NE Australia: A hybrid tectonic model for final Nuna assembly. Precambrian Research, 372, 106602.


[26]Wang, T., Tong, Y., Xiao, W., Guo, L., Windley, B. F., Donskaya, T., Li, S., Tssrendash, N., Zhang, J., 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data. National science review, 9(5), nwab210.


[27]Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li, R., Gao, L., ... Wan, B., 2022. Triassic closure of South Tianshan Ocean: Evidence from provenance analysis of High-Pressure relics-bearing fore-arc sediments and multi-disciplinary data. DOI: https://doi.org/10.21203/rs.3.rs-1551759/v1


[28]Xiao, W., Şengör, A. C., Chai, Y., Lin, S., Ao, S., Song, D., 2022. Tectonics and Sedimentology of Accretionary and Collisional Orogens. Journal of Asian Earth Sciences, 105270.


[29]Yu, J.X., Xu, B., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr-O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: Implications for Jurassic metallogenic variation in the southern tibet. Ore Geology Reviews, 145, 104869.


[30]Yuan, P., Xu,B., Wang, Z., Liu, D., 2022. A Study on Apatite from Mesozoic Alkaline Intrusive Complexes, Central High Atlas, Morocco. Crystals, 12(4), 461.


[31]Yue, L., Liu, Y., Song, Y., Ma, W., Zhuang, L., Tang, B., 2022. Karst-hosted Mississippi Valley-type Pb–Zn mineralization in fold-thrust systems: a case study of the Changdong deposit in the Sanjiang Belt, China. Mineralium Deposita, 1-22.


[32]Zeng, H., Song, D., Xiao, W., Li, P., 2022. Field geology and provenance analyses of the Ganqimaodu accretionary complex (Inner Mongolia, China): implications for early Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt. International Journal of Earth Sciences, 1-24.


[33]Zhang, Y., Sun, M., Yin, J., Yuan, C., Sun, Z., Xia, X., 2022. Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc–arc collision: perspectives from zircon Hf–O isotopes. International Journal of Earth Sciences, 1-15.


[34]Zhao, H., Zhang, J., Zhang, B., Qu, J., Zhang, Y., Niu, P., Hui, J., Wang, Y., 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: Constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt. Journal of Structural Geology, 158, 104575.


Publications