Orogenic Architecture and Crustal Growth
from Accretion to Collision
[1] Aibai, A., Chen, X., Wu, Y., Deng, X., Hao, F., Li, N., Xiao, W., Chen, Y., 2023. Nature, origin, and evolution of carbon-rich fluids in orogenic gold deposits: Insights from fluid inclusion and C-H-O isotope studies of the Tokuzbay gold deposit, Chinese Altai. Ore Geology Reviews 163.
[2] An, S., Wang, J., Xiao, W., Yao, C., Zhou, K., Yang, H., Jia, X., Zhang, Z., 2023. Crustal structure of the Tian Shan Orogen and its adjacent areas inferred from EIGEN-6C4 gravity field data. Tectonophysics 869.
[3] Gan, J., Xiao, W., Mao, Q., Wang, H., Yang, H., Sang, M., Jia, X., Liu, Y., Zhang, Z., Tan, Z., Li, R., 2023. A newly defined latest Carboniferous-Permian ridge subduction in the southern Altaids: Insights from adakitic, S-type, and I-type granitoids in the northern East Junggar (NW China). International Geology Review, 1-29.
[4] Gao, L., Xiao, W., Tan, Z., Wang, X., Guo, Y., 2023. A newly defined, long-lived Paleozoic intra-oceanic arc in the South Tianshan (NW China): Implications for multiple accretionary tectonics in the southern Altaids. GSA Bulletin 135, 767-786.
[5] Hong, T., Santos, G.S., van Staal, C.R., Ji, W.H., Lin, S., 2023, Mapping uncovered a multi-phase arc--ack-arc system in the southern Beishan in the Permian. National Science Review, https://doi.org/10.1093/nsr/nwac204
[6] Hong, T., van Staal, C., Lin, S., Santos, G.S. and Wang, K. 2023. Evolving Permian magmatism associated with arc migration in the southern Beishan Orogenic Collage, Central Asian orogenic belt, NW China. In: Nance, R.D., Strachan, R.A., Quesada, C. and Lin, S. (eds) Supercontinents, Supercontinents, Orogenesis and Magmatism: A Tribute to the Career of J. Brendan Murphy. Geological Society, London, Special Publications 542, https://doi.org/10.1144/SP542-2022-346 (we can not download it).
[7] Hou Zeng-Qian, Wang Qing-Fei, Zhang Hai-Jiang, Xu Bo, Yu Nian, Wang Rui, David I. Groves, Zheng Yuan-Chuan, Han Shou-Cheng, Gao Lei, Yang Lin, 2023. Lithosphere architecture characterized by crust–mantle decoupling controls the formation of orogenic gold deposits. National Science Review, 10, nwac257.
[8] Hou Zeng-Qian, Xu Bo, Zhang Hai-Jiang, Zheng Yuan-Chuan, Wang Rui, Liu Yan, Miao Zhuang, Guo Lei, Zhao Zhidan, William L. Griffin, Suzanne Y. O’Reilly, 2023. Refertilized continental root controls the formation of the Mianning–Dechang carbonatite-associated rare-earth-element ore system. Communications Earth & Environment, 4, 293.
[9] Jia, X., Xiao, W., Sang, M., Zhai, M., Li, L., Huang, P., An, S., Mao, Q., Tan, Z., Wang, H., 2023. Early Ordovician to early Silurian forearc accretionary processes in front of the Selety–Stepnyak arc in the Kokchetav area, northern Kazakhstan: implications for continental growth in the northwestern Altaids. International Journal of Earth Sciences 112, 2161-2180.
[10] Li, L., Xiao, W., Windley, B.F., Zhao, G., Yang, H., Sang, M., Jia, X., 2023. An early Paleozoic accumulation-foundering cycle of ultramafic cumulates in the Harlik arc and its implications for continental crustal growth in the Altaids. Lithos 462-463.
[11] Li, L., Xiao, W., Zhao, G., Yang, H., Han, Y., Wang, K., Gan, J., 2023. Tearing on the southward subducting Kelameili oceanic lithosphere in the early Devonian: Evidence from the magmatism in the Harlik arc, southern Altaids. Lithos 454-455.
[12] Li, N., Zhang, B., Danišík, M., Chen, Y.-J., Selby, D., Xiao, W., 2023. Formation–exhumation history of the Carboniferous Axi epithermal gold deposit in the Chinese Western Tianshan based on zircon U–Pb and pyrite Re–Os geochronology and (U–Th)/He zircon–apatite thermochronometry. Journal of the Geological Society 180.
[13] Li, P., Song, D., Zeng, H., 2023. Late Carboniferous arc-continent collision and subduction polarity reversal in southeast Altaids: New insights from provenance analysis of late Paleozoic sedimentary records. Journal of Asian Earth Sciences 248.
[14] Li, R., Xiao, W., Mao, Q., Wang, H., Sang, M., Tan, Z., Ao, S., Song, D., 2024. The Sailajiazitage volcanic and related rocks in the Tiekelik belt imply a Neoproterozoic seamount accreted to the southern Tarim Craton. Lithos 464-465.
[15] Li, R., Xiao, W., Mao, Q., Zhang, J.e., Ao, S., Song, D., Tan, Z., Wang, H., Bhandari, S., 2023. High magnesian schist, granitic gneiss, amphibolite and monzogneiss in the eastern Ama Drime Massif in South Tibet (China): A rifted Paleoproterozoic arc fringed the western Columbia supercontinent? Precambrian Research 388.
[16] Lin, S., Wang, L.J., Xiao, W.J., Xing, G.F., Niu, Z.J., Zhao, X.L., Yin, C.Q., Zhang, S., Liu, H., 2023, The early Paleozoic Wuyi-Yunkai orogeny in South China: A collisional orogeny with a major lag in time between onset of collision and peak metamorphism in subducted continental crust. Geological Society, London, Special Publications, v. 542, https://doi.org/10.1144/SP542-2023-6
[17] Liu, P., Liu, X., Xiao, W., Zhang, Z., Xiao, Y., Song, Y., Wu, H., 2023. Multiple ridge subduction processes in the southern Altaids: Implications from clinopyroxene chemistry and Sr–Nd–Hf isotopes of late carboniferous Nb-enriched, magnesian diorite-andesites in West Junggar, NW China. Chemical Geology 635.
[18] Liu, Y., Song, Y., Fard, M., Hou, Z., Ma, W., and Yue, L., 2023, The Characteristics and Origin of Barite in the Giant Mehdiabad Zn-Pb-Ba Deposit, Iran: Economic Geology, v. 118, p. 1495-1519.
[19] Liu, Y., Xiao, W., Ma, Y., Li, S., Peskov, A.Y., Chen, Z., Zhou, T., Guan, Q., 2023. Oroclines in the Central Asian Orogenic Belt. Natl Sci Rev 10, nwac243.
[20] Mao, Q., Xiao, W., Ao, S., Song, D., Sang, M., Tan, Z., Wang, H., Li, R., Wang, M., Zhang, C.-L., 2023. Final Amalgamation Processes of the Southern Altaids: Insights from the Triassic Houhongquan Ophiolitic Mélange in the Beishan Orogen (NW China). Lithosphere 2023.
[21] Mao, Q., Xiao, W., Ao, S., Windley, B.F., Song, D., Sang, M., Tan, Z., Wang, H., Li, R., 2023. Ordovician to Triassic episodic growth of the Dananhu arc, Eastern Tianshan (NW China). International Geology Review 65, 2798-2819.
[22] Mao, Q., Xiao, W., Ao, S., Yang, H., Song, D., Zhang, Z., Sang, M., Wang, H., Tan, Z., Li, R., 2023. Subduction Initiation of the Southern Branch of the Paleo‐Asian Ocean in the Middle Ordovician in the Southern Beishan Orogen. Earth and Space Science 10.
[23] Mao, Q., Xiao, W., Sang, M., Ao, S., Song, D., Tan, Z., Wang, H., Li, R., 2023. Two different types of provenances and the amalgamation of subduction complexes in the Eastern Tianshan of the Southern Altaids. Frontiers in Earth Science 10.
[24] Muhtar, M.N., Xiao, W., Brzozowski, M.J., Chen, S., Aibai, A., Wang, M., Wu, C., 2023. Genetic link between orogenic Au and porphyry Cu ( Au) mineralization in the Dananhu Arc, NW China: Evidence from geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Tudunbei Au deposit. Journal of Geochemical Exploration 253.
[25] Qiao, Q., Xiao, W., Huang, B., Piper, J.D.A., Sun, J., Nie, J., Wang, D., Liu, C., 2023. Paleomagnetic constraints on neotectonic deformation within the Southern Tian Shan piedmont and implications for the latest Miocene enhanced aridification in the Tarim Basin. Global and Planetary Change 227.
[26] Safonova I., Perfilova A. (2023) Survived and disappeared intra-oceanic arcs of the Paleo-Asian Ocean: evidence from Kazakhstan. National Science Review (Reviews in Earth Sciences). https://doi.org/10.1093/nsr/nwac215
[27] Sang, M., Tan, Z., Xiao, W., Mao, Q., Wang, H., Li, R., Qiao, Q., 2023. Formation of the eclogites of the Atbashi complex, Kyrgyzstan, in a subduction zone mélange diapir. Communications Earth & Environment 4.
[28] Sarjoughian, F., Pourkarim, S., Esmaeili, R., Ao, S., Xiao, W., Lentz, D.R., 2023. Bulk chemistry and Hf isotope ratios of the Almogholagh Intrusive Complex, western Iran: a consequence of an extensional tectonic regime in the Late Jurassic. International Geology Review 65, 1878-1899.
[29] Schulmann, K., Edel, J.B., Lexa, O., Xiao, W., Trebinova, D., Spikings, R., Schaltegger, U., Derkowski, A., Szczerba, M., 2023. Paleomagnetic, tectonic and geochronological constraints for Permian-Triassic oroclinal bending of the Mongolian collage. Natl Sci Rev 10, nwac184.
[30] Song, D., Mitchell, R.N., Xiao, W., Mao, Q., Wan, B., Ao, S., 2023. Andean-type orogenic plateau as a trigger for aridification in the arcs of northeast Pangaea. Communications Earth & Environment 4.
[31] Song, Y., Liu, X., Xiao, W., Gong, X.-H., Liu, X., Xiao, Y., Zhang, Z., Liu, P., 2023. Tectonic evolution of circum-Rodinia subduction: Evidence from Neoproterozoic A-type granitic magmatism in the Central Tianshan Block, northwest China. Precambrian Research 387.
[32] Tao, Z.L., Yin, J.Y*., Chen, W., Chen, Y.L., Sun, J.B., Xu, Z.H., 2022. Zircon U-Pb ages and tectonic implications of Late Paleozoic volcanic rocks in the western Tianshan, North Xinjiang, China. Journal of Earth Science, 33(3): 736-752.
[33] Tao, Z.L., Yin, J.Y*., Sun, M., Wang, T., Yuan, C., Chen, W., Huang, H., Seltmann, R., Thomson, S.N., Chen, Y.L., 2022. Spatial and temporal variations of geochemical and isotopic compositions of Paleozoic magmatic rocks in the Western Tianshan, NW China: a magmatic response of the Advancing and Retreating Subduction. Journal of Asian Earth Sciences, 232(1): 105112.
[34] Tao, Z.L., Yin, J.Y*., Xiao, W.J., Seltmann, R., Chen, W., Sun, M., Wang, T., Yuan, C., Thomson, S.N., Chen, Y.L., Xia, X.P., 2022. Contrasting styles of peraluminous S-type and I-type granitoids in the Chinese south Tianshan (NW China): Petrogenesis and tectonic implications. American Journal of Science, 322, 279-312
[35] Wang T., Huang H., Zhang J.J., Wang C.Y., Cao G.Y., Xiao W.J., Yang Q.D., Bao X.W., 2023. Voluminous continental growth of the Altaids and its control on metallogeny. National Science Review, 10(2): nwac283. https://doi.org/10.1093/nsr/nwac283. See data at https://doi.org/10.1093/nsr/nwac283.
[36] Wang T., Tong Y., Huang H., Zhang H.R., Guo L., Li Z.X., Wang X.X., Bruce E., Li S., Zhang J.J., Donskaya T.V., Oleg P., Zhang L., Song P., Zhang X.W., Wang C.Y., 2023. Granitic record of the assembly of the Asian continent. Earth-Science Reviews, 237: 104298. https://doi.org/10.1016/j.earscirev.2022.104298. For ESR special issue (BigData): “Toward a big data approach for reconstructing regional to global paleogeography and tectonic histories (Guest Editors: Z-X. Li, B. Eglington, and T. Wang)”. See data at https://doi.org/10.1016/j.earscirev.2022.104298.
[37] Wang T., Tong Y., Xiao W.J., Guo L., Windley B.F., Donskaya T., Li S., Narantsetseg T., Zhang J.J., 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data. National Science Review, 9(5): nwab210. https://doi.org/10.1093/nsr/nwab210. See data at https://doi.org/10.1093/nsr/nwab210.
[38] Wang T., Xiao W.J., William J.C., Tong Y., Hou Z.Q., Huang H., Wang X.X., Lin S.F., Reimar S., Wang C.Y., Han B.F., 2023. Quantitative characterization of orogens through isotopic mapping. Communications Earth & Environment, 4, 110. https://doi.org/10.1038/s43247-023-00779-5. See data at https://doi.org/10.6084/m9.figshare.22345072.v1.
[39] Wang, H., Xiao, W., Li, R., Chen, H., Tan, Z., Mao, Q., 2023. Late Neoproterozoic–Cambrian eclogites and high‐pressure granulites in the Central Qilian terrane (China) record the earliest subduction of Proto‐Tethyan Ocean in the eastern Tethysides. Journal of Metamorphic Geology 41, 849-878.
[40] Wang, H., Xiao, W., Li, R., Chen, H., Tan, Z., Mao, Q., Shi, M., 2023. High-grade complexes record the Late Permian-Middle Triassic arc metamorphism in the southernmost Altaids: Implications for the final closure of the Paleo-Asian Ocean. Lithos 442-443.
[41] Wang, K., Li, Y., Xiao, W., Zheng, J., Wang, C., Jiang, H., Brouwer, F.M., 2024. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic granitoids along the Solonker suture zone in Inner Mongolia, China: Constraints on bidirectional subduction and closure timing of the Paleo-Asian Ocean. Gondwana Research 126, 1-21.
[42] Wang, L.J., Lin, S., Xiao, W.J., 2023, Yangtze and Cathaysia blocks of South China: Their separate positions in Gondwana until early Paleozoic juxtaposition. Geology, v. 51, p. 723–727. https://doi.org/10.1130/G51362.1
[43] Wang, L.J., Zhang, K.X., Lin, S., Bédard, J.H., Santos, G.S., He, W.H., Y., C.Q., Xiao, W.J., 2023, Late Tonian (ca. 785 Ma) subduction-related mafic-ultramafic cumulates in the West Cathaysia terrane, South China. Precambrian Research, v. 387, No. 106980, https://doi.org/10.1016/j.precamres.2023.106980
[44] Wang, M., Mao, Q., Xiao, W., Yang, H., Wang, H., Li, R., 2023. Discovery of Neoproterozoic adakitic rocks in the Eastern Tianshan (NW China) of the southern Altaids. International Journal of Earth Sciences 112, 981-997.
[45] Wang, Y.M., Wang, Y.N*., Yin, J.Y*., Thomson, S.N., Xiao, W.J., He, Z.Y., Chen, W., Cai, K.D., Wu, M.X., Meng, Y., 2023. Mesozoic exhumation of the northern West Junggar, NW China: insights from low-temperature thermochronometers. Tectonophysics, 862, 229939.
[46] Wu, M., Yin, J., He, Z., Xiao, W., Wang, Y., Chen, W., Wang, Y., Sun, J., Li, D., Meng, Y., 2023. Mesozoic Thermo-Tectonic Evolution of the Western Altai Orogenic Belt (NW China): Insights from Low-Temperature Thermochronology. Lithosphere 2023.
[47] Xia, Y.F., Wang, L.J., Rayner, N., Lin, S., Xiao, W.J., Yin, C.Q., Qian, J.H., Liu, H., Zhao, X.L., 2023, Metamorphic P-T-t evolution deciphered from episodic monazite growth in granulites of the Chencai Complex and implications for the Early Paleozoic orogeny, West Cathaysia Terrane, South China. Geological Society, London, Special Publications, v. 542, https://doi.org/10.1144/SP542-2023-22 (we can not download it).
[48] Xu Bo, Hou Zeng-Qian, William L. Griffin, Lu Yong-Jun, Belousova Elena, Xu Ji-Feng, Suzanne Y. O’Reilly, 2021. Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 106, 656-661.
[49] Xu Bo, Hou Zeng-Qian, William L. Griffin, Suzanne Y. O’Reilly, Zheng Yuan-Chuan, Wang Tao, Fu Bin, Xu Ji-Feng, 2022. In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research, 111, 53–63.
[50] Xu Bo, Hou Zeng-Qian, William L. Griffin, Yu Jia-Xing, Long Tao, Zhao Yi, Wang Tao, 2022. Apatite halogens and Sr–O and zircon Hf–O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology, 605, 120924.
[51] Xu Bo, Hou Zeng-Qian, William L. Griffin, Zheng Yuan-Chuan, Guo Zhen, Hou Jue, M. Santosh, Suzanne Yvette O’Reilly, 2021. Cenozoic lithospheric architecture and metallogenesis in southeastern Tibet. Earth-Science Reviews, 214, 103472.
[52] Xu Bo, Hou Zeng-Qian, William L. Griffin, Zhou Ye, Zhang Yu-Fei, Lu Yong-Jun, Belousova Elena, Xu Ji-Feng, 2021. Elevated Magmatic Chlorine and Sulfur Concentrations in the Eocene–Oligocene Machangqing Cu–Mo Porphyry System. Economic Geology, 24, 257-276.
[53] Yin J.Y*., Wang, Y.N*., Hodges, K.V., Xiao, W.J., Thomson, S.N., Chen, W., Yuan, C., Sun, M., Cai, K.D., Sun, J.B., 2023. Episodic long‐term exhumation of the Tianshan orogenic belt: New insights from multiple low‐temperature thermochronometers. Tectonics, 42, e2022TC007469.
[54] Zeng, H., Song, D., Xiao, W., Li, P., 2023. Accretion of an early Paleozoic Alaska-type arc onto northern North China: Implications for continental growth of the Central Asian orogenic belt. GSA Bulletin.
[55] Zeng, H., Song, D., Xiao, W., Li, P., 2023. Origin and tectonic evolution of the Langshan (NW China): Insights from Proterozoic magmatic and sedimentary records. Precambrian Research 386.
[56] Zhang ZY, Hou ZQ, 2023. Lithospheric architecture revealed by Hf isotopic mapping and its control on the giant critical metallic ore systems in South China. Geology, in press.
[57] Zhang, H.J., Lü, Q.T., Wang, X.L., Han, S.C., Liu, L.J., Gao, L., Wang, R., Hou, Z.Q., 2023. Lithospheric delamination evidenced from seismic imaging and its controls on the Mesozoic basin and range magmatic province in South China. Nature Communications, 14, 2718. https://doi.org/10.1038/s41467-023-37855-5. See data at https://doi.org/10.1038/s41467-023-37855-5.
[58] Zhang, J., Qiu, Z., Li, S., Gao, S., Guo, R., Ma, X., Qiu, J., Li, S., Tao, H., Chen, J., Li, J., Xiao, W., 2023. Linking environmental changes and organic matter enrichment in the middle part of the Yanchang Formation (Ordos Basin, China) to the rollback of an oceanic slab in the eastern Paleo-Tethys. Sedimentary Geology 455.
[59] Zhang, J.e., Chen, Y., Xiao, W., Wakabayashi, J., Song, S., Luo, J., Zhao, Y., 2023. Architecture of ophiolitic mélanges in the Junggar region, NW China. Geosystems and Geoenvironment 2.
[60] Zhang, J.e., Xiao, W., Zhang, B., Wakabayashi, J., Cai, F., Sein, K., 2023. Continental‐scale shearing triggered by Oligocene subduction in Myanmar‐Indochina, SE Asia. Geological Journal.
[61] Zhang, Y.Y., Sun, M., Yin, J.Y*., Yuan, C., Sun, Z., Xia, X.P., 2022. Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc-arc collision: Perspectives from zircon Hf–O isotopes. International Journal of Earth Sciences, 111, 2519–2533.
[62] Zhang, Y.Y., Sun, M., Yin, J.Y*., Yuan, C., Sun, Z., Xia, X.P., 2022. Subduction initiation of the western Paleo-Asian Ocean linked to global tectonic re-organization: Insights from Cambrian island-arc magmatism within West Junggar, NW China. Geological Society of America Bulletin, 134 (11-12): 3099–3112.
[63] Zhao, L., Li, Y., Cheng, S., Li, Z., Zheng, J., Qiu, H., Bai, X., Xiao, W., Brouwer, F.M., 2024. Geochronology and geochemistry of early Paleozoic magmatism in the Qilian orogen: Constraints on closure of the Proto-Tethys Ocean. Gondwana Research 126, 223-242.
[64] Zhao, L., Li, Y., Xiang, H., Zheng, J., Xiao, W., Chen, X., Jiang, H., Xie, Y., Brouwer, F.M., 2023. A Devonian Shoshonitic Appinite–Granite Suite in the North Qinling Orogenic Belt: Implications for Partial Melting of a Water-Fluxed Lithospheric Mantle in an Extensional Setting. Journal of Petrology 64.
[65] Zhao, T., Xiao, W., Mao, Q., Yang, H., Abuduxun, N., Li, P., 2023. The Wulanmoren Accretionary Complex Unravels Early Devonian to Late Triassic Multiple‐Arc Amalgamation in the Tianshan Orogen (NW China). Earth and Space Science 10.
[66] Zheng, R., Li, J., Xiao, W., Zhang, J., 2023. Long-lived subduction retreating led to continental rifting along the northern Gondwana: Insights from Devonian igneous rocks and ophiolite in the Beishan orogenic collage. Lithos 454-455.
[67] Zheng, R., Zhang, J., Xiao, W., 2023. Continental crust delamination in a retreating subduction zone: A case study in the southern Alxa (Inner Mongolia, China), Central Asian Orogenic Belt. GSA Bulletin.
[68] Zhu X., Huang Y., Wang T., Huang H., Zheng H., 2023. Crustal structures inferred from Bouguer gravity anomalies in the Altai Orogen, Junggar Basin, Tianshan Orogen, and Tarim Basin, Journal of Asian Earth Sciences, 257, 105842. https://doi.org/10.1016/j.jseaes.2023.105842.
[69] 黄毓森, 朱小三, 王涛, 卢民杰, 童英, 黄河. 2023. 基于航磁资料对智利塔拉帕卡地区的构造解释. 地球物理学进展, 待刊.
[70] 孟云, 尹继元 , 肖文交, Stuart N. Thomson, 王雅美, 陈文, 李大鹏, 吴明轩, 2023.帕米尔东缘晚中新世以来多阶段隆升-剥露过程: 来自裂变径迹和(U-Th)/He低温热年代学的制约. 岩石学报,39(12): 3685-3700.
[71] 唐波浪, 刘英超*, 岳龙龙, 马旺, and 庄亮亮, 2023, 云南华昌山Pb-Zn矿床热液流体演化:方解石REE及C-O同位素证据: 地质学报, v. 97, p. 1178-1191.
[72]陶再礼,尹继元*,袁超,肖文交,陈文,陈岳龙,王雅美,杨帆,2022. 西昆仑造山带晚奥陶世侵入岩的岩石成因:对原特提斯洋俯冲过程的制约. 岩石学报,38(11):3321-3340.