​​​​​Orogenic Architecture and Crustal Growth 

from Accretion to Collision

IGCP 662
Publications(2022)

[1]Choulet, F., Seltmann, R., Divaev, F., Shatov, V., Konopelko, D., 2022. Mantle-triggered intrusions in the western Central Asian Orogenic Belt: implications for the fertilisation of the crust in Tian Shan, Uzbekistan. International Journal of Earth Sciences, 1-24.


[2]Gao, Y., Chen, L., Talebian, M., Wu, Z., Wang, X., Lan, H., Ai, Y., Jiang, M., Hou, G., Khatib, M.M., Zhu, R., 2022. Nature and structural heterogeneities of the lithosphere control the continental deformation in the northeastern and eastern Iranian plateau as revealed by shear-wave splitting observations. Earth and Planetary Science Letters, 578, 117284.


[3]Konopelko, D.L., Cherny, R.I., Petrov, S.V., Strekopytov, S., Seltmann, R., Vlasenko, N.S., Streopytov, V.V., Mamadjanov, Y.M., Wang, X.S., Plotinskaya, O.Y., Andreeva, E.M., 2022. The Mushiston Sn deposit in Tajik Tien Shan as the type locality for stannite-cassiterite-hydrostannate mineralization: New mineral chemistry data and genetic constraints. Journal of Geochemical Exploration, 107017.


[4]Lan, H., Chen, L., Chevrot, S., Talebian, M., Wang, X., Gao, Y., Zhang, J., Wu, Z., Shokati, M., Jiang, M., Ai, Y., Hou, G., Mao, M., Pham, T., Xiao, W., Zhu, R., 2022. Structure of the western Jaz Murian forearc basin, southeast Iran, revealed by autocorrelation and polarization analysis of teleseismic P and S waves. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023456.


[5]Li, L., Xiao, W., Windley, B.F., Mao, Q., Gan, J., Jia, X., Yang, H., Sang, M., 2022. Defining the Huangcaopo complex and gabbroic magmatism in the northern Harlik Mountains (NW China): Late Cambrian to latest Permian accretionary growth of the East Junggar Arc? Geological Journal, 57(3), 1022-1045.


[6]Li, L., Xiao, W., Windley, B.F., Yang, H., Jia, X., Sang, M., Abuduxun, N., Liu, Y., 2022. Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids? American Journal of Science, 322(2), 313-350.


[7]Li, P., Sun, M., Narantsetseg, T., Jourdan, F., Hu, W., Yuan, C., 2022. First structural observation around the hinge of the Mongolian Orocline (Central Asia): Implications for the geodynamics of oroclinal bending and the evolution of the Mongol-Okhotsk Ocean. GSA Bulletin.


[8]Li, S., Miller, C.F., Wang, T., Xiao, W., Chew, D., 2022. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas. Geology, 50(4), 427-431.


[9]Li, Y., Xiao, W., Zheng, J., Brouwer, F.M. 2022. Northward subduction of the South Qilian ocean: Insights from early Paleozoic magmatism in the South-Central Qilian belts. Geosystems and Geoenvironment, 1(1), 100013.


[10]Liu, Y., Song, Y., Hou, Z., Xi, D., Li, S., Yue, L., Ma, W., Tang, B., 2022. Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China. Science China Earth Sciences, 65(1), 167-181.


[11]Lu, J.G., Griffin, W.L., Huang, J.X., Dai, H.K., Castillo-Oliver, M., O’Reilly, S.Y., 2022. Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions to Mineralogy and Petrology, 177(2), 1-16.


[12]Lu, T.Y., He, Z.Y., Klemd, R., 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2), 216-221.


[13]Ma, W., Liu, Y., Yang, Z., Huizenga, J. M., Li, Z., Zhao, M., Yue, L., Zhao, S., 2022. Petrogenesis of the quartz diorite from the Lietinggang-Leqingla Pb-Zn-Fe-Cu-(Mo) deposit in southern Tibet: Implications for the genesis of a skarn-type polymetallic deposit in the Tibetan-Himalayan collisional orogen. Ore Geology Reviews, 145, 104920.


[14]Moghadam, H.S., Li, Q.L., Griffin, W.L., Chiaradia, M., Hoernle, K., O’Reilly, S.Y., Esmaeili, R. 2022. The Middle-Late Cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman. Bulletin, 134(5-6), 1414-1442.


[15]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Zhang, W.F., Chen, B.Y., Lei, R.X., Xiao, W.J., 2022. Age and genesis of the Jinshan gold deposit in the Chinese North Tianshan: A link to large-scale strike–slip shearing events. Ore Geology Reviews, 142, 104734.


[16]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Lei, R., Wang, M., Xiao, W., 2022. Permian arc magmatism in the eastern Tianshan: implications for the evolution of the southern Altaids. Social Science Electronic Publishing.


[17]Sang, M., Xiao, W., Windley, B.F., Mao, Q., Zhang, Z., Wang, H., Yang, H., Ao, S., Song, D., Gan, J., Zhang, Z., Li, L., 2022. From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals, 12(2), 166.


[18]Savinskiy, I., Safonova, I., Perfilova, A., Kotler, P., Sato, T., Maruyama, S., 2022. A story of Devonian ocean plate stratigraphy hosted by the Ulaanbaatar accretionary complex, northern Mongolia: implications from geological, structural and U–Pb detrital zircon data. International Journal of Earth Sciences, 1-24.


[19]Sun, Q., Zhao, X., Xue, C., Seltmann, R., McClenaghan, S.H., Li, Y., Symons, D.T., 2022. Neoproterozoic tectonic shift from collisional orogenesis to intraplate extension in the Yili Block, southern Central Asian Orogenic Belt. Precambrian Research, 374, 106626.


[20]Tang, Q., Sun, W., Ao, S., Fu, L.Y., Xiao, W., 2022. Strong lateral heterogeneities of upper mantle shear-wave structures beneath the central and eastern Tien Shan. International Journal of Earth Sciences, 1-15.


[21]Tao, Z., Yin, J., Chen, W., Chen, Y., Sun, J., Xu, Z., 2022. Zircon U-Pb Ages and Tectonic Implications of Late Paleozoic Volcanic Rocks in the Western Tianshan, North Xinjiang, China. Journal of Earth Science, 1-17.


[22]Tao, Z., Yin, J., Sun, M., Wang, T., Yuan, C., Chen, W., Huang, H., Seltmann, R., Thomson, S.N., Chen, Y., 2022. Spatial and temporal variations of geochemical and isotopic compositions of Paleozoic magmatic rocks in the Western Tianshan, NW China: a magmatic response of the Advancing and Retreating Subduction. Journal of Asian Earth Sciences, 105112.


[23]Tao, Z., Yin, J., Xiao, W., Seltmann, R., Chen, W., Sun, M., Wang, T., Yuan, C., Thomson, S.N., Chen, Y., Xia, X., 2022. Contrasting styles of peraluminous S-type and I-type granitic magmatism: Identification and implications for the accretionary history of the Chinese South Tianshan. American Journal of Science, 322(2), 280-312.


[24]Tian, Z., Liu, P., Wen, F., Zhu, H., Wang, W., Liu, F., 2022. Mesoproterozoic accretionary orogenesis: Evidence from∼ 1.4 Ga metamorphism on the southeastern margin of the North China Craton. Journal of Asian Earth Sciences, 105247.


[25]Volante, S., Collins, W.J., Barrote, V., Nordsvan, A.R., Pourteau, A., Li, Z.X., Li, J., Beams, S., 2022. Spatio–temporal evolution of Mesoproterozoic magmatism in NE Australia: A hybrid tectonic model for final Nuna assembly. Precambrian Research, 372, 106602.


[26]Wang, T., Tong, Y., Xiao, W., Guo, L., Windley, B. F., Donskaya, T., Li, S., Tssrendash, N., Zhang, J., 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data. National science review, 9(5), nwab210.

DOI:10.1093/nsr/nwab210


[27]Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li, R., Gao, L., ... Wan, B., 2022. Triassic closure of South Tianshan Ocean: Evidence from provenance analysis of High-Pressure relics-bearing fore-arc sediments and multi-disciplinary data. DOI: https://doi.org/10.21203/rs.3.rs-1551759/v1


[28]Xiao, W., Şengör, A. C., Chai, Y., Lin, S., Ao, S., Song, D., 2022. Tectonics and Sedimentology of Accretionary and Collisional Orogens. Journal of Asian Earth Sciences, 105270.


[29]Yu, J.X., Xu, B., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr-O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: Implications for Jurassic metallogenic variation in the southern tibet. Ore Geology Reviews, 145, 104869.


[30]Yuan, P., Xu,B., Wang, Z., Liu, D., 2022. A Study on Apatite from Mesozoic Alkaline Intrusive Complexes, Central High Atlas, Morocco. Crystals, 12(4), 461.


[31]Yue, L., Liu, Y., Song, Y., Ma, W., Zhuang, L., Tang, B., 2022. Karst-hosted Mississippi Valley-type Pb–Zn mineralization in fold-thrust systems: a case study of the Changdong deposit in the Sanjiang Belt, China. Mineralium Deposita, 1-22.


[32]Zeng, H., Song, D., Xiao, W., Li, P., 2022. Field geology and provenance analyses of the Ganqimaodu accretionary complex (Inner Mongolia, China): implications for early Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt. International Journal of Earth Sciences, 1-24.


[33]Zhang, Y., Sun, M., Yin, J., Yuan, C., Sun, Z., Xia, X., 2022. Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc–arc collision: perspectives from zircon Hf–O isotopes. International Journal of Earth Sciences, 1-15.


[34]Zhao, H., Zhang, J., Zhang, B., Qu, J., Zhang, Y., Niu, P., Hui, J., Wang, Y., 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: Constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt. Journal of Structural Geology, 158, 104575.

DOI:10.1016/j.jsg.2022.104575 


[35]Inna Safonova, Alina Perfilova, Ilya Savinskiy, Pavel Kotler, Min Sun, Bo Wang, Sandstones of the Itmurundy accretionary complex, central Kazakhstan, as archives of arc magmatism and subduction erosion: Evidence from U-Pb zircon ages, geochemistry and Hf-Nd isotopes, Gondwana Research, Volume 111, 2022, Pages 35-52, 

DOI:10.1016/j.gr.2022.06.018.


[36]Safonova, I., Perfilova, A., Obut, O. et al. Traces of intra-oceanic arcs recorded in sandstones of eastern Kazakhstan: implications from U–Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes. Int J Earth Sci (Geol Rundsch) 111, 2449–2468 (2022). 

DOI: 10.1007/s00531-021-02059-z


[37]Ganbat, A., Tsujimori, T., Miao, L., Safonova, I., Pastor-Galán, D., Anaad, C., Aoki, S., Aoki, K., & Chimedsuren, M. (2022). Age, petrogenesis, and tectonic implications of the late Permian magmatic rocks in the Middle Gobi volcanoplutonic Belt, Mongolia. Island Arc, 31( 1), e12457. 

DOI:10.1111/iar.12457


[38]Yunying Zhang, Min Sun, Jiyuan Yin, Chao Yuan, Zhen Sun, Xiaoping Xia; Subduction initiation of the western Paleo-Asian Ocean linked to global tectonic reorganization: Insights from Cambrian island-arc magmatism within the West Junggar, NW China. GSA Bulletin 2022; 

DOI: 10.1130/B36304.1


[39]Zhang, Y., Sun, M., Yin, J. et al. Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc–arc collision: perspectives from zircon Hf–O isotopes. Int J Earth Sci (Geol Rundsch) 111, 2519–2533 (2022). 

DOI:10.1007/s00531-022-02164-7


[40]Peng Song, Tao Wang, Ying Tong, Jianjun Zhang & He Huang (2022) Late Carboniferous intrusions along the Kalamaili suture zone, southwestern Central Asian Orogenic Belt (CAOB): implications for a tectonic switch from subduction to collision, International Geology Review.

DOI: 10.1080/00206814.2022.2098834


[41]Jin Zhang, Junfeng Qu, Beihang Zhang, Heng Zhao, Ronggou Zheng, Jianfeng Liu, Jie Hui, Pengfei Niu, Long Yun, Shuo Zhao, Yiping Zhang.Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic, American Journal of Science Sep 2022, 322 (7) 851-897.

DOI: 10.2475/07.2022.01


[42]Rongguo Zheng, Jinyi Li, Jin Zhang; Juvenile hafnium isotopic compositions recording a late Carboniferous–Early Triassic retreating subduction in the southern Central Asian Orogenic Belt: A case study from the southern Alxa. GSA Bulletin 2021;; 134 (5-6): 1375–1396.

DOI: 10.1130/B35991.1


[43]Mukhin, P., Mirkamalov, R. & Seltmann, R. Structure of the Muruntau gold ore region in the Kyzyl-Kum desert (Central Asia). Int J Earth Sci (Geol Rundsch) (2022). 

DOI:10.1007/s00531-022-02262-6


[44] Liu, Y. C. *, Song, Y. C. *, Hou, Z. Q., Xi, D., Li, S. P., Yue, L. L., Ma, W., Tang, B. L., 2022, Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China: Science China Earth Sciences, 65 (1): 167-181. 

DOI:10.1007/s11430-020-9838-4


[45] Yue L L, Liu Y C*, Song Y C, Ma W, Zhuang L L, Tang B L, 2022. Karst-hosted Mississippi Valley-type Pb–Zn mineralization in fold-thrust systems: A case study of the Changdong deposit in the Sanjiang Belt, China. Mineralium Deposita, 57: 663-684. 

DOI:10.1007/s00126-021-01088-7


[46] Ma W, Liu Y C*, Yang Z, Marten Huizenga J, Li Z, Zhao M, Yue L, Zhao S, 2022. Petrogenesis of the quartz diorite from the Lietinggang-Leqingla Pb-Zn-Fe-Cu-(Mo) deposit in southern Tibet: Implications for the genesis of a skarn-type polymetallic deposit in the Tibetan-Himalayan collisional orogen. Ore Geology Reviews, 145: 104920. 

DOI:10.1016/j.oregeorev.2022.104920


[47] 刘英超, 宋玉财, 侯增谦, 席党鹏, 李素萍, 岳龙龙, 马旺, 唐波浪, 2022. 孢粉化石对三江成矿带厂硐密西西比河谷型铅锌矿床成矿年龄的限定. 中国科学:地球科学, 52 (2): 340-355.

DOI:10.1360/N072020-0286


[48] 刘英超, 侯增谦, 岳龙龙, 马旺, 唐波浪, 2022, 中国沉积岩容矿铅锌矿床中的关键金属: 科学通报, 67 (4~5): 406-424.

DOI:doi.org/10.1360/TB-2021-0838


[49] 唐波浪,刘英超,岳龙龙,马旺,庄亮亮.云南华昌山Pb-Zn矿床热液流体演化:方解石REE及C-O同位素证据[J/OL].地质学报:1-16[2022-11-21].

DOI:10.19762/j.cnki.dizhixuebao.2022165


[50] Xu, B., Hou, Z. Q., Griffin, W. L., Zhou,Y., Zhang, Y.F., Lu, Y.J., Belousova. E.A, Xu, J.F., O’Reilly, S. Y., 2021. Elevated Magmatic Chlorine and Sulfur Concentrations in the Eocene–Oligocene Machangqing Cu–Mo Porphyry System. SEG Special Publications, 24 (2), 257–276.

DOI:10.5382/SP.24.14


[51] Xu, B., Hou, Z. Q., Griffin, W. L., O’Reilly, S. Y., 2022 Apatite halogens and Sr–O and zircon Hf–O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology10.

DOI:10.1130/G38466.11016/j.chemgeo.2022.120924.


[52] Xu B., Hou Z. Q.,Griffin WL., O'Reilly, S. Y., Zheng Y., Wang T., Fu B., Xu J. In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research. 2022.

DOI: 10.1016/j.gr.2022.07.005.


[53] Yu, J.X., Xu, B*., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr–O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: implications for Jurassic metallogenic variation in the southern Tibet. Ore Geology Reviews. 

DOI:104869.10.1016/j.oregeorev.2022.104869.


[54] Zhang, Z.; Xu, B*.; Yuan, P.; Wang, Z. Gemological and Mineralogical Studies of Greenish Blue Apatite in Madagascar. Crystals 2022, 11.

DOI: 10.3390/xxxxx.


[55] Gu, J.; Xu, B*.; Li, S.; Zhao, Y. Titanite Spectroscopy and In Situ LA-ICP-MS U‐Pb Geochronology of Mogok, Myanmar. Crystals 2022, 12, 1050.

DOI: 10.3390/ cryst12081050.


[56] Yuan, P, Y.; Zhao, Y; Xu, B*. A Study on the Mineralogy and Volatile Fraction of Scapolite from Mogok, Myanmar. Crystals 2022, 12



Publications