​​​​​Orogenic Architecture and Crustal Growth 

from Accretion to Collision

IGCP 662

[1]Abuduxun, N., Windley, B.F., Xiao, W., Zhang, J., Chen, Y., Huang, P., Gan, J., Sang, M., 2022. Carboniferous tectonic incorporation of a Devonian seamount and oceanic crust into the South Tianshan accretionary orogen in the southern Altaids. International Journal of Earth Sciences, 111:2535–2553.

[2]Abuduxun, N., Xiao, W., Windley, B.F., Huang, P., Yang, H., Gan, J., Sang, M., Liu, X.J., 2022. Early Permian syn-subduction extension in the South Tianshan (NW China): Insights from A-type granitoids in the southern Altaids. Frontiers in Earth Science, 9, 831677.

[3]Afonso, J.C., Ben-Mansour, W., O’Reilly, S.Y., Griffin, W.L., Salajeghegh, F., Foley, S., Begg, G., Selway, K., Macdonald, A., Januszczak, N., Fomin, I., Nyblade, A.A. and Yang, Y.  2022.  Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa.  Nature Geoscience, 15, 405-410.

[4]Akbulut, M., González-Jiménez, J.M., Belousova, E., Colás Ginés, V., Farré de Pablo, J., Pujol Solà, N. and Proenza, J.A.  2022.  A record of metasomatism and crustal contamination of the Mediterranean lithosphere in chromitites of the Orhaneli Ophiolite Complex (NW Türkiye).  Journal of Asian Earth Sciences, 236, 105311.

[5]Alard, O., Halimulati, A., Gorojovsky, L. and Wieland, P.  2022.  Sulfur mass fraction in 37 Geological Reference Materials by Titration, XRF and Elemental Analyser.  Geostandards and Geoanalytical Research, ID GGR-0933.

[6]Amulele, G.M. Lanati, A.W. and Clark, S.M.  2022.  The electrical conductivity of albite feldspar: implications for oceanic lower crustal sequences and subduction zones.  American Mineralogist, 107, 614–624.

[7]Cao, L., Yuan, H., Zhao, L., Zhao, M., Huang, H., Hao, T. and Qiu, X.  2022.  Fault-controlled regional magmatism and mineral deposition in central Cathaysia - Evidence from ambient noise tomography.  Science China - Earth Sciences, 65, 1715-1735.

[8]Choulet, F., Seltmann, R., Divaev, F., Shatov, V., Konopelko, D., 2022. Mantle-triggered intrusions in the western Central Asian Orogenic Belt: implications for the fertilisation of the crust in Tian Shan, Uzbekistan. International Journal of Earth Sciences, 1-24.

[9]Daczko, N.R. and Piazolo. 2022.  Recognition of melferite – A rock formed in syn-deformational high-strain melt-transfer zones through sub-solidus rocks: A review and synthesis of microstructural criteria.  Lithos, 430-431, 106850.

[10]de Vries, J., Lin, S., van Staal, C.R., Yakymchuk, C., 2022. A structural–metamorphic study of the Gubaoquan eclogites and enveloping rock units in the Beishan Orogenic Collage, NW China, with emphasis on the structural evolution, nature of juxtaposition and exhumation. International Journal of Earth Sciences, v. 111, p. 2603–2632, https://doi.org/10.1007/s00531-022-02192-3.

[11]Fatemeh Sarjoughian, Sholeh Pourkarim, Rasoul Esmaeili, Songjian Ao, Wenjiao Xiao & David R. Lentz2022. Bulk chemistry and Hf isotope ratios of the Almogholagh Intrusive Complex, western Iran: a consequence of an extensional tectonic regime in the Late Jurassic, International Geology Review, DOI: 10.1080/00206814.2022.2114020

[12]Ganbat, A., Tsujimori, T., Miao, L., Safonova, I., Pastor-Galán, D., Anaad, C., Aoki, S., Aoki, K., & Chimedsuren, M. 2022. Age, petrogenesis, and tectonic implications of the late Permian magmatic rocks in the Middle Gobi volcanoplutonic Belt, Mongolia. Island Arc, 31(1), e12457. DOI:10.1111/iar.12457

[13]Gao, Y., Chen, L., Talebian, M., Wu, Z., Wang, X., Lan, H., Ai, Y., Jiang, M., Hou, G., Khatib, M.M., Zhu, R., 2022. Nature and structural heterogeneities of the lithosphere control the continental deformation in the northeastern and eastern Iranian plateau as revealed by shear-wave splitting observations. Earth and Planetary Science Letters, 578, 117284.

[14]Gu, J.; Xu, B., Li, S., Zhao, Y. 2022. Titanite Spectroscopy and In Situ LA-ICP-MS U‐Pb Geochronology of Mogok, Myanmar. Crystals,1050.DOI: 10.3390/ cryst12081050.

[15]Hong, T., Santos, G.S., van Staal, C.R., Ji, W.H., Lin, S., 2022. Mapping uncovered a multi-phase arc--ack-arc system in the southern Beishan in the Permian. National Science Review, https://doi.org/10.1093/nsr/nwac204.

[16]Huang, J., Huang, J.-X., Griffin, W.L. and Huang, F.  2022.  Zn-, Mg- and O-isotope evidence for the origin of mantle eclogites from Roberts Victor kimberlite (Kaapvaal Craton, South Africa).  Geology, 50, 593-597.

[17]Jiang, W., Yu, J.-H., Griffin, W.L., Wang, F., Wang, X., Pham, T and Nguyen, D.  2022.  Where did the Kontum Massif in central Vietnam come from?.  Precambrian Research, 377, 106725.

[18]Khalimov, G., Yang, H., Sang, M., Xiao, W., Mamadjanov, Y., Aminov, J., Yogibekov, D., Liu, X., 2022.  Late Paleozoic Shoshonitic Magmatism in the Southwestern Middle Tianshan (Tajikistan) of the Southwestern Altaids: Implications for Slab Roll-Back With Extensional Arc-Related Basins After Flat Subduction. Front. Earth Sci. 10:893751. doi: 10.3389/feart.2022.893751.

[19]Konopelko, D.L., Cherny, R.I., Petrov, S.V., Strekopytov, S., Seltmann, R., Vlasenko, N.S., Streopytov, V.V., Mamadjanov, Y.M., Wang, X.S., Plotinskaya, O.Y., Andreeva, E.M., 2022. The Mushiston Sn deposit in Tajik Tien Shan as the type locality for stannite-cassiterite-hydrostannate mineralization: New mineral chemistry data and genetic constraints. Journal of Geochemical Exploration, 107017.

[20]Lan, H., Chen, L., Chevrot, S., Talebian, M., Wang, X., Gao, Y., Zhang, J., Wu, Z., Shokati, M., Jiang, M., Ai, Y., Hou, G., Mao, M., Pham, T., Xiao, W., Zhu, R., 2022. Structure of the western Jaz Murian forearc basin, southeast Iran, revealed by autocorrelation and polarization analysis of teleseismic P and S waves. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023456.

[21]Li, L., Xiao, W., Windley, B.F., Mao, Q., Gan, J., Jia, X., Yang, H., Sang, M., 2022. Defining the Huangcaopo complex and gabbroic magmatism in the northern Harlik Mountains (NW China): Late Cambrian to latest Permian accretionary growth of the East Junggar Arc? Geological Journal, 57(3), 1022-1045.

[22]Li, L., Xiao, W., Windley, B.F., Yang, H., Jia, X., Sang, M., Abuduxun, N., Liu, Y., 2022. Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids? American Journal of Science, 322(2), 313-350.

[23]Li, P., Sun, M., Narantsetseg, T., Jourdan, F., Hu, W., Yuan, C., 2022. First structural observation around the hinge of the Mongolian Orocline (Central Asia): Implications for the geodynamics of oroclinal bending and the evolution of the Mongol-Okhotsk Ocean. GSA Bulletin.

[24]Li, R., Ao, S., Xiao, W., Schulmann, K., Mao, Q., Song, D., ... & Bhandari, S., 2022. Tectonic Juxtaposition of Two Independent Paleoproterozoic Arcs by Cenozoic Duplexing in the Arun Tectonic Window of the Eastern Nepalese Himalaya. Frontiers in Earth Science, 10, 890171.

[25]Li, S., Miller, C.F., Wang, T., Xiao, W., Chew, D., 2022. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas. Geology, 50(4), 427-431.

[26]Li, T., Jiang, M., Zhao, L., Yao, W., Chen, L., Chu, Y., Sun, B., Ai, Y., Wan, B., Gessner, K. and Yuan, H.  2022.  Wedge Tectonics in South China: constraints from new seismic data.  Science Bulletin, 67, 1496-1507.

[27]Li, W., Chen, Y., Yuan, X., Xiao, W., & Windley, B. F. (2022). Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision. Nature communications, 13(1), 1-8.

[28]Li, Y., Xiao, W., Zheng, J., & Brouwer, F. M., 2022. Northward subduction of the South Qilian ocean: Insights from early Paleozoic magmatism in the South-Central Qilian belts. Geosystems and Geoenvironment, 1(1), 100013.

[29]Liu, D., Zhao, L., Yuan, H., Sun, W. and Xiao, W.  2022.  Receiver Function Mapping of the Mantle Transition Zone Beneath the Tian Shan Orogenic Belt.  Journal of Geophysical Research, 127, e2022JB024635.

[30]Liu, L., Gao, S.S., Liu, K.H., Griffin, W.L., Li, S., Tong, S. and Ning J.  2022.  Mantle dynamics of the North China Craton: new insights from mantle transition zone imaging constrained by P-to-S receiver functions.  Geophysical Journal International, 231, 629-637.

[31]Liu, Y. C., Song, Y. C., Hou, Z. Q., Xi, D., Li, S. P., Yue, L. L., Ma, W., Tang, B. L., 2022, Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China: Science China Earth Sciences, 65 (1): 167-181. DOI:10.1007/s11430-020-9838-4

[32]Liu, Y., Song, Y., Hou, Z., Xi, D., Li, S., Yue, L., Ma, W., Tang, B., 2022. Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China. Science China Earth Sciences, 65(1), 167-181.

[33]Lu, J.G., Griffin, W.L., Huang, J.X., Dai, H.K., Castillo-Oliver, M., O’Reilly, S.Y., 2022. Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions to Mineralogy and Petrology, 177(2), 1-16.

[34]Lu, J.G., Griffin, W.L., Huang, J.-X., Dai, H.-K., Castillo-Oliver, M., and O’Reilly, S.Y.   2022.  Structure and composition of the lithosphere beneath Mount Carmel, North Israel.  Contributions to Mineralogy and Petrology, 177, 29.

[35]Lu, T.Y., He, Z.Y., Klemd, R., 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2), 216-221.

[36]Ma, W., Liu, Y. C., Yang, Z., Marten, H. J., Li, Z., Zhao, M., Yue, L., Zhao, S., 2022. Petrogenesis of the quartz diorite from the Lietinggang-Leqingla Pb-Zn-Fe-Cu-(Mo) deposit in southern Tibet: Implications for the genesis of a skarn-type polymetallic deposit in the Tibetan-Himalayan collisional orogen. Ore Geology Reviews, 145: 104920. DOI:10.1016/j.oregeorev.2022.104920

[37]Malitch, K.N., Puchtel, I.S., Belousova, E.A. and Badanina, I.Y.  2022.  A combined Re-Os and Pt-Os isotope and HSE abundance study of Ru-Os-Ir alloys from the Kunar and Unga placer deposits, the Taimyr Peninsula, Polar Siberia.  Minerals, 12, 1463.

[38]Mao, Q., Xiao, W., Ao, S., Li, R., Wang, H., Tan, Z., & Tan, W. 2022. Late Devonian to early Carboniferous roll-back related extension setting for the Tuwu-Yandong porphyry copper metallogenic belt in the Dananhu arc of the eastern Tianshan (NW China) in the southern Altaids. Ore Geology Reviews, 105060.

[39]Mao, Q., Xiao, W., Buckman, S., Huang, P., Ao, S., Song, D., Zhang, J., Sang, M., 2022. Deformational history of the Kanguer Subduction Complex in the Eastern Tianshan (NW China): Implications for Paleozoic‐Triassic multiple accretionary tectonics of the southern Altaids. Tectonics, e2022TC007527.

[40]Mao, Q., Xiao, W., Wang, H., Ao S., Windley, B.F., Song, D., Sang, M., Tan, Z., Li, R., Wang, M., 2022. Prolonged Late Mesoproterozoic to Late Triassic Tectonic Evolution of the Major Paleo- Asian Ocean in the Beishan Orogen (NW China) in the Southern Altaids. Front. Earth Sci. 9:825852. doi: 10.3389/feart.2021.825852

[41]Mathian, M., Chassé, M., Calas, G., Griffin, W.L., O’Reilly, S.Y., Buisson, T. and Allard, T.  2022.  Insights on the Cenozoic climatic history of southeast Australia from kaolinite dating.  Palaeogeography, Palaeoclimatology, Palaeoecology, 604, 111212.

[42]Moghadam, H.S., Arai, S., Griffin, W.L., Khedr, M.Z., Emilio, E., Henry, H., O’Reilly, S.Y.  and Ghorbani, G.  2022.  Geochemical Variability among Stratiform Chromitites and Ultramafic Rocks from Western Makran, South Iran.  Lithos, 412-413, 106591.

[43]Moghadam, H.S., Griffin, W.L., Santos, J.F., Chen, R.-X., Karsli, O., Lucci, F., Sepidbar, F. and O’Reilly, S.Y.  2022.  Geochronology, Geochemistry and Petrology of the Oligocene Magmatism in SE Segment of the UDMB, Iran.  Lithos, 416-417, 106644.

[44]Moghadam, H.S., Li, Q.L., Griffin, W.L., Chiaradia, M., Hoernle, K., O’Reilly, S.Y., Esmaeili, R. 2022. The Middle-Late Cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman. Bulletin, 134(5-6), 1414-1442.

[45]Moghadam, H.S., Li, Q.-L., Griffin, W.L., Stern, R.J., Santos, J.F., Ducea, M.N., Ottley, C.J., Karsli, O., Sepidbar, F. and O’Reilly, S.Y.  2022.  Temporal changes in subduction- to collision-related magmatism in the Neotethyan orogen: the southeast Iran example (Earth Science Review).  Earth Science Review, 226, 103930.

[46]Moghadam, H.S., Li, Q.L., Stern, R.J., Griffin, W.L. and O’Reilly, S.Y.  2022.  Zircon xenocrysts in Late Cretaceous magmatic rocks in the Kermanshah Ophiolite: Link to Iran continental crust supports the subduction initiation model.  International Geology Review, DOI: 10.1080/00206814.2022.2043193.

[47]Muhtar, M. N., Wu, C. Z., Brzozowski, M. J., Zhang, W. F., Chen, B. Y., Lei, R. X., & Xiao, W. J. , 2022. Age and genesis of the Jinshan gold deposit in the Chinese North Tianshan: A link to large-scale strike–slip shearing events. Ore Geology Reviews, 142, 104734.

[48]Muhtar, M. N., Wu, C., Brzozowski, M. J., Lei, R., Wang, M., & Xiao, W. 2022. Permian ridge subduction-related magmatism in the Eastern Tianshan: Implications for the evolution of the southern Altaids. Lithos, 428, 106815.

[49]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Lei, R., Wang, M., Xiao, W., 2022. Permian arc magmatism in the eastern Tianshan: implications for the evolution of the southern Altaids. Social Science Electronic Publishing.

[50]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Zhang, W.F., Chen, B.Y., Lei, R.X., Xiao, W.J., 2022. Age and genesis of the Jinshan gold deposit in the Chinese North Tianshan: A link to large-scale strike–slip shearing events. Ore Geology Reviews, 142, 104734.

[51]Mukhin, P., Mirkamalov, R. & Seltmann, R. 2022.Structure of the Muruntau gold ore region in the Kyzyl-Kum desert (Central Asia). Int J Earth Sci (Geol Rundsch). DOI:10.1007/s00531-022-02262-6.

[52]Özaydın, S., Selway, K., Griffin, W.L. and Moorkamp, M.  2022.  Probing the southern African lithosphere with magnetotellurics, Part II, linking electrical conductivity, composition and tectonomagmatic evolution.  Journal of Geophysical Research: Solid Earth, 127, e2021JB023105.

[53]Portner, R., Dreyer, B.M., Clague, D.A., Daczko, N.R. and Castillo, P.R.  2022.  Oceanic zircon records rhyolite formation on the Alarcon Rise mid-ocean ridge.  Journal of Petrology, 63, egac040.

[54]Safonova I., Perfilova A. (2022) Survived and disappeared intra-oceanic arcs of the Paleo-Asian Ocean: evidence from Kazakhstan. National Science Review (Reviews in Earth Sciences). https://doi.org/10.1093/nsr/nwac215.

[55]Safonova, I., Perfilova, A., Obut, O. et al. Traces of intra-oceanic arcs recorded in sandstones of eastern Kazakhstan: implications from U–Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes. Int J Earth Sci (Geol Rundsch) 111, 2449–2468 (2022). DOI: 10.1007/s00531-021-02059-z.

[56]Safonova, I., Perfilova, A., Savinskiy, I., Kotler, P., Sun, M., Wang B., 2022. Sandstones of the Itmurundy accretionary complex, central Kazakhstan, as archives of arc magmatism and subduction erosion: Evidence from U-Pb zircon ages, geochemistry and Hf-Nd isotopes, Gondwana Research, 35-52, DOI:10.1016/j.gr.2022.06.018.

[57]Sang, M., Xiao, W., Windley, B.F.,Mao, Q., Zhang, Z., Wang, H., Yang, H., Ao, S., Song, D., Gan, J., 2022. From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals,12, 166. https://doi.org/10.3390/min12020166.

[58]Santos, G.S., Bedard, J.H., van Staal, C.R., Lin, S., Wang, K., in press, Geology of the Liuyuan Complex, NW China: a Permian back-arc basin ophiolite at the southern edge of the Central Asian Orogenic Belt, Geological Society of America Bulletin, https://doi.org/10.1130/B36736.1

[59]Santos, G.S., Hong, T., van Staal, C.R., Bedard, J.H., Lin, S., Wang, K., 2022, Permian back-arc basin formation and arc migration in the southern Central Asian Orogenic Belt, NW China, Geological Journal, https://doi.org/10.1002/gj.4609.

[60]Savinskiy, I., Safonova, I., Perfilova, A., Kotler, P., Sato, T., Maruyama, S., 2022. A story of Devonian ocean plate stratigraphy hosted by the Ulaanbaatar accretionary complex, northern Mongolia: implications from geological, structural and U–Pb detrital zircon data. International Journal of Earth Sciences, 1-24.

[61]Silva, D., Piazolo, S., and Daczko, N.R.  2022.  Trapped K-feldspar phenocrysts as a signature of melt migration pathways within active high-strain zones.  Journal of Metamorphic Geology, (in press, online).

[62]Song, P., Wang, T., Tong, Y., Zhang, J.J., Huang, H., 2022. Late Carboniferous intrusions along the Kalamaili suture zone, southwestern Central Asian Orogenic Belt (CAOB): implications for a tectonic switch from subduction to collision, International Geology Review.DOI: 10.1080/00206814.2022.2098834.

[63]Sun, Q., Zhao, X., Xue, C., Seltmann, R., McClenaghan, S.H., Li, Y., Symons, D.T., 2022. Neoproterozoic tectonic shift from collisional orogenesis to intraplate extension in the Yili Block, southern Central Asian Orogenic Belt. Precambrian Research, 374, 106626.

[64]Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li R., Gao, L., Guo, Y., Gan, J., Liu, Y., Wan, B., 2022. Final closure of the Paleo Asian Ocean basin in the early Triassic. Communications Earth & Environment, 3, 259, https://doi.org/10.1038/s43247-022-00578-4.

[65]Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li, R., Gao, L., Wan, B., 2022. Triassic closure of South Tianshan Ocean: Evidence from provenance analysis of High-Pressure relics-bearing fore-arc sediments and multi-disciplinary data. DOI: https://doi.org/10.21203/rs.3.rs-1551759/v1.

[66]Tang, Q., Sun, W., Ao, S., Fu, L.Y., Xiao, W., 2022. Strong lateral heterogeneities of upper mantle shear-wave structures beneath the central and eastern Tien Shan. International Journal of Earth Sciences, 1-15.

[67]Tao, Z., Yin, J., Chen, W., Chen, Y., Sun, J., Xu, Z., 2022. Zircon U-Pb Ages and Tectonic Implications of Late Paleozoic Volcanic Rocks in the Western Tianshan, North Xinjiang, China. Journal of Earth Science, 1-17.

[68]Tao, Z., Yin, J., Sun, M., Wang, T., Yuan, C., Chen, W., Huang, H., Seltmann, R., Thomson, S.N., Chen, Y., 2022. Spatial and temporal variations of geochemical and isotopic compositions of Paleozoic magmatic rocks in the Western Tianshan, NW China: a magmatic response of the Advancing and Retreating Subduction. Journal of Asian Earth Sciences, 105112.

[69]Tao, Z., Yin, J., Xiao, W., Seltmann, R., Chen, W., Sun, M., Wang, T., Yuan, C., Thomson, S.N., Chen, Y., Xia, X., 2022. Contrasting styles of peraluminous S-type and I-type granitic magmatism: Identification and implications for the accretionary history of the Chinese South Tianshan. American Journal of Science, 322(2), 280-312.

[70]Tian, Z., Liu, P., Wen, F., Zhu, H., Wang, W., Liu, F., 2022. Mesoproterozoic accretionary orogenesis: Evidence from∼ 1.4 Ga metamorphism on the southeastern margin of the North China Craton. Journal of Asian Earth Sciences, 105247.

[71]Tilhac, R., Begg, G.C., O’Reilly, S.Y. and Griffin, W.L.  2022.  A global review of Hf-Nd isotopes: new perspectives on the chicken-and-egg problem of ancient mantle signatures.  Chemical geology, 609, 121039.

[72]Volante, S., Collins, W.J., Barrote, V., Nordsvan, A.R., Pourteau, A., Li, Z.X., Li, J., Beams, S., 2022. Spatio–temporal evolution of Mesoproterozoic magmatism in NE Australia: A hybrid tectonic model for final Nuna assembly. Precambrian Research, 372, 106602.

[73]Wang, H., Xiao, W., Windley, B. F., Zhang, Q. W. L., Tan, Z., Wu, C., & Shi, M. 2022. Diverse P-T-t paths reveal high-grade metamorphosed forearc complexes in NW China. Journal of Geophysical Research: Solid Earth, 127, e2022JB024309. https://doi. org/10.1029/2022JB024309.

[74]Wang, K., Xiao, W., Windley, B. F., Mao, Q., Ji, W., Sang, M., et al. 2022. The Dashui subduction complex in the Eastern Tianshan-Beishan Orogen (NW China): Long-lasting subduction-accretion terminated by unique mid-Triassic strike- slip juxtaposition of arcs in the southern Altaids. Tectonics, 41, e2021TC007190. https://doi.org/10.1029/2021TC007190.

[75]Wang, M., Xiao, W., Mao, Q., Yang, H., Wang, H., Li R., 2022. Episodic Paleozoic Adakitic Magmatism in the Eastern Tianshan, Southern Altaids: Implications for Petrogenesis and Geodynamics. Acta Geologica Sinica‐English Edition 96 (4), 1136-1149.

[76]Wang, T., Tong, Y., Xiao, W., Guo, L., Windley, B. F., Donskaya, T., Li, S., Tssrendash, N., Zhang, J., 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data. National science review, 9(5), nwab210.DOI:10.1093/nsr/nwab210

[77]Xiao, W., Pirajno, F., Seltmann, R., Safonova, I., Chen, Y., & Muhtar, M. N., 2022. Metallogeny of the Southern Altaids: Key to understanding the accretionary tectonics and crustal evolution of Central Asia. Ore Geology Reviews, 144, 104871.

[78]Xiao, W., Şengör, A. C., Chai, Y., Lin, S., Ao, S., Song, D., 2022. Tectonics and Sedimentology of Accretionary and Collisional Orogens. Journal of Asian Earth Sciences, 105270.

[79]Xiong, Q., Dai,  H.-K., Zheng, J.P., Griffin, W.L., Zheng, H.D., Wang, L. and O’Reilly, S.Y.  2022.  Vertical depletion of ophiolitic mantle reflects melt focusing and interaction in the asthenospheric column under oceanic spreading centers.  Nature Communications, https://doi.org/10.1038/s41467-022-34781-w.

[80]Xu B., Hou Z. Q.,Griffin WL., O'Reilly, S. Y., Zheng Y., Wang T., Fu B., Xu J. In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research. 2022.DOI: 10.1016/j.gr.2022.07.005.

[81]Xu, B., Hou, Z. Q., Griffin, W. L., O’Reilly, S. Y., 2022. Apatite halogens and Sr–O and zircon Hf–O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology10.DOI:10.1130/G38466.11016/j.chemgeo.2022.120924.

[82]Xu, B., Hou, Z. Q., Griffin, W. L., Zhou,Y., Zhang, Y.F., Lu, Y.J., Belousova. E.A, Xu, J.F., O’Reilly, S. Y., 2021. Elevated Magmatic Chlorine and Sulfur Concentrations in the Eocene–Oligocene Machangqing Cu–Mo Porphyry System. SEG Special Publications, 24 (2), 257–276.DOI:10.5382/SP.24.14.

[83]Xu, B., Hou, Z.-Q., Griffin, W.L., O'Reilly, S.Y., Zheng, Y.-C., Wang, T., Fu, B. and Xua J.-F.  2022.  In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system.  Gondwana Research, 111, 53-63.

[84]Yu, J.X., Xu, B., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr–O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: implications for Jurassic metallogenic variation in the southern Tibet. Ore Geology Reviews. DOI:104869.10.1016/j.oregeorev.2022.104869.

[85]Yu, J.X., Xu, B., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr-O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: Implications for Jurassic metallogenic variation in the southern tibet. Ore Geology Reviews, 145, 104869.

[86]Yuan, P, Y.; Zhao, Y; Xu, B. A Study on the Mineralogy and Volatile Fraction of Scapolite from Mogok, Myanmar. Crystals 2022, 12.

[87]Yuan, P., Xu,B., Wang, Z., Liu, D., 2022. A Study on Apatite from Mesozoic Alkaline Intrusive Complexes, Central High Atlas, Morocco. Crystals, 12(4), 461.

[88]Yue, L., Liu, Y., Song, Y., Ma, W., Zhuang, L., Tang, B., 2022. Karst-hosted Mississippi Valley-type Pb–Zn mineralization in fold-thrust systems: a case study of the Changdong deposit in the Sanjiang Belt, China. Mineralium Deposita, 1-22.

[89]Yue, L.L., Liu, Y.C., Song, Y.C., Ma, W., Zhuang, L. L., Tang, B. L., 2022. Karst-hosted Mississippi Valley-type Pb–Zn mineralization in fold-thrust systems: A case study of the Changdong deposit in the Sanjiang Belt, China. Mineralium Deposita, 57: 663-684. DOI:10.1007/s00126-021-01088-7.

[90]Zeng, H., Song, D., Xiao, W., Li, P., 2022. Field geology and provenance analyses of the Ganqimaodu accretionary complex (Inner Mongolia, China): implications for early Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt. International Journal of Earth Sciences, 1-24.

[91]Zhang, J., Qu, J.F, Zhang, B.H, Zhao, H., Zheng, R.G., Liu, J.F., Hui, J., Niu, P.F., Yun, L., Zhao, S., Zhang,Y.P..2022. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic, American Journal of Science, 322 (7) 851-897.DOI: 10.2475/07.2022.01.

[92]Zhang, Y., Sun, M., Yin, J. et al.2022. Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc–arc collision: perspectives from zircon Hf–O isotopes. Int J Earth Sci (Geol Rundsch) 111, 2519–2533. DOI:10.1007/s00531-022-02164-7.

[93]Zhang, Y.Y, Sun, M., Yin, J.Y., Yuan, C., Sun, Z., Xia, X.P.,2022. Subduction initiation of the western Paleo-Asian Ocean linked to global tectonic reorganization: Insights from Cambrian island-arc magmatism within the West Junggar, NW China. GSA Bulletin. DOI: 10.1130/B36304.1.

[94]Zhang, Z., Xu, B., Yuan, P., Wang, Z., 2022. Gemological and Mineralogical Studies of Greenish Blue Apatite in Madagascar. Crystals 11.DOI: 10.3390/xxxxx.

[95]Zhao, H., Zhang, J., Zhang, B., Qu, J., Zhang, Y., Niu, P., Hui, J., Wang, Y., 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: Constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt. Journal of Structural Geology, 158, 104575.DOI:10.1016/j.jsg.2022.104575.

[96]Zhao, L., Tyler, I.M., Gorczyk, W., Murdie, R.E., Gessner, K., Lu, Y., Smithies, H., Li, T., Yang, J., Zhan, A., Wan, B., Sun, B., Yuan, H. and the CWAS Group  2022.  Seismic evidence of two cryptic sutures in Northwestern Australia: implications for the style of subduction during the Paleoproterozoic assembly of Columbia.  Earth and Planetary Science Letters, 579, 117342.

[97]Zheng R.G., Li, J.Y., Zhang J., 2022. Juvenile hafnium isotopic compositions recording a late Carboniferous–Early Triassic retreating subduction in the southern Central Asian Orogenic Belt: A case study from the southern Alxa. GSA Bulletin.134 (5-6): 1375–1396.DOI: 10.1130/B35991.1.

[98]Ganbat A., Tsujimori T., Miao L., Safonova I., Pastor-Galán D., Anaad C., Aoki S., Aoki K., Chimedsuren M., 2022. Age, petrogenesis, and tectonic implications of the late Permian magmatic rocks in the Middle Gobi volcanoplutonic Belt, Mongolia. Island arc, DOI: 10.1111/iar.12457.

[99]Hu W., Li P., Sun M., Safonova I., Jiang Y., Yuan C., Kotler P., 2022. Provenance of late Paleozoic sedimentary rocks in eastern Kazakhstan: Implications for the collision of the Siberian margin with the Kazakhstan collage. Journal of Asian Earth Sciences 232, 104978.

[100]Gabriel S. Santos, Tong Hong, Cees R. van Staal, Jean Bedard, Shoufa Lin, Kai Wang, Permian back‐arc basin formation and arc migration in the southern Central Asian Orogenic Belt, Northwest China , Geological Journal, 10.1002/gj.4609, 58, 2, (523-533), (2022).